首页 > Python教程 > Python应用 > Python开发教程:7个技巧的助力你的数据分析工作之路

Python开发教程:7个技巧的助力你的数据分析工作之路

时间:2019-10-29    作者:Perter Nistrup   来源:机器之心公众号

如何提升数据分析能力?Peter Nistrup 根据自身经验列出了 7 个有用工具。

本文列举了一些提升或加速日常数据分析工作的技巧,包括:

1. Pandas Profiling

2. 使用 Cufflinks 和 Plotly 绘制 Pandas 数据

3. IPython 魔术命令

4. Jupyter 中的格式编排

5. Jupyter 快捷键

6. 在 Jupyter(或 IPython)中使一个单元同时有多个输出

7. 为 Jupyter Notebook 即时创建幻灯片

1. Pandas Profiling

该工具效果明显。下图展示了调用 df.profile_report() 这一简单方法的结果:

使用该工具只需安装和导入 Pandas Profiling 包。

本文不再详述这一工具,如欲了解更多,请阅读:

https://towardsdatascience.com/exploring-your-data-with-just-1-line-of-python-4b35ce21a82d

2. 使用 Cufflinks 和 Plotly 绘制 Pandas 数据

「经验丰富的」数据科学家或数据分析师大多对 matplotlib 和 pandas 很熟悉。也就是说,你只需调用 .plot() 方法,即可快速绘制简单的 pd.DataFrame 或 pd.Series:

有点无聊?

这已经很好了,不过是否可以绘制一个交互式、可缩放、可扩展的全景图呢?是时候让 Cufflinks* *出马了!(Cufflinks 基于 Plotly 做了进一步的包装。)

在环境中安装 Cufflinks,只需在终端中运行! pip install cufflinks --upgrade 即可。查看下图:

效果好多了!

注意,上图唯一改变的是 Cufflinks cf.go_offline() 的导入和设置,它将 .plot() 方法变为 .iplot()。

其他方法如 .scatter_matrix() 也可以提供非常棒的可视化结果:

需要做大量数据可视化工作的朋友,可以阅读 Cufflinks 和 Plotly 的文档,发现更多方法。

  • Cufflinks 文档:https://plot.ly/ipython-notebooks/cufflinks/

  • Plotly 文档:https://plot.ly/

3. IPython 魔术命令

IPython 的「魔术」是 IPython 基于 Python 标准语法的一系列提升。魔术命令包括两种方法:行魔术命令(line magics):以 % 为前缀,在单个输入行上运行;单元格魔术命令(cell magics):以 %% 为前缀,在多个输入行上运行。下面列举了 IPython 魔术命令提供的一些有用功能:

%lsmagic:找出全部命令

如果你只记得一个魔术命令,那必须得是这一个。执行 %lsmagic 命令将提供所有可用魔术命令的列表:

%debug:交互式 debug

这可能是我最常使用的魔术命令了。

大部分数据科学家都遇到过这种情况:执行的代码块一直 break,你绝望地写了 20 个 print() 语句,想输出每个变量的内容。然后,当你最终修复问题后,你还得返回并再次删除所有 print() 语句。

不过以后再也不用这样了。遇到问题后只需执行 %debug 命令,即可执行想要运行的任意代码部分:

上图中发生了什么?

  1. 我们有一个函数,它以列表为输入,并对所有的偶数取平方值。

  2. 我们运行函数,但是出了些问题。但是我们并不知道怎么回事!

  3. 对该函数使用%debug 命令。

  4. 让调试器告诉我们 x 和 type(x) 的值。

  5. 问题显而易见:我们把'6'作为字符串输入到函数中了!

这对于更复杂的函数非常有用。

%store:在 notebook 之间传递变量

这个命令也很酷。假设你花了一些时间清洗 notebook 中的数据,现在你想在另一个 notebook 中测试一些功能,那么你是在同一个 notebook 中实现该功能,还是保存数据并在另一个 notebook 中加载数据呢?使用%store 命令后,这些操作都不需要!该命令将存储变量,你可以在其他任意 notebook 中检索该变量:

  • %store [variable] 存储变量。

  • %store -r [variable] 读取/检索存储变量。

%who:列出所有全局变量。

你是否遇到过,为变量赋值后却忘记变量名的情况?或者不小心删掉了负责为变量赋值的单元格?使用%who 命令,你可以得到所有全局变量的列表:

%%time:计时魔法命令

使用该命令可以获取所有计时信息。只需对任意可执行代码应用%%time 命令,你就可以得到如下输出:

%%writefile:向文件写入单元格内容

在 notebook 中写复杂函数或类,且想将其保存到专属文件中时,该魔法命令非常有用。只需为函数或类的单元格添加 %%writefile 前缀和想要保存到的文件名即可:

如上所示,我们可以将创建的函数保存到 utils.py 文件中,然后就可以随意导入了。在其他 notebook 中也可以这样,只要与 utils.py 文件属于同一个目录即可。

4. Jupyter 中的格式编排

这个工具很酷!Jupyter 考虑到 markdown 中存在 HTML / CSS 格式。以下是我最经常使用的功能:

蓝色、时尚:

    <div class="alert alert-block alert-info">   This is <b>fancy</b>!</div>

    红色、轻微慌张:

      <div class="alert alert-block alert-danger"> This is <b>baaaaad</b>!</div>

      绿色、平静:

        <div class="alert alert-block alert-success"> This is <b>gooood</b>!</div>

        下图展示了它们的运行过程:

        当你想以 Notebook 格式呈现一些发现时,这非常有用!

        5. Jupyter 快捷键

        想了解和学习键盘快捷键,你可以使用命令面板:Ctrl + Shift + P,获取 notebook 所有功能的列表。下面选取了几个最基础的命令:

        • Esc:进入命令模式。在命令模式内,你可以使用方向键在 notebook 内进行导航。

        在命令模式内:

        • A 和 B:在当前单元格上方(Above)或下方(Below)插入新的单元格。

        • M:当前单元格转入 Markdown 状态。

        • Y:当前单元格转入 code 状态。

        • D,D:删除当前单元格。

        • Enter:当前单元格回到编辑模式。

           

        在编辑模式内:

        • Shift + Tab:为你在当前单元格中键入的对象提供文档字符串(文档),持续使用该快捷键,可循环使用文档模式。

        • Ctrl + Shift + -:在光标所在处分割当前单元格。

        • Esc + F:查找并替换代码(不包括输出)。

        • Esc + O:切换单元格输出。

        选择多个单元格:

        • Shift + Down 和 Shift + Up:选中下方或上方的单元格。

        • Shift + M:合并选中单元格。

        注意,选中多个单元格后,你可以批量执行删除/复制/剪切/粘贴/运行操作。

        6. 在 Jupyter(或 IPython)中使一个单元同时有多个输出

        想展示 pandas DataFrame 的 .head() 和 .tail(),但由于创建运行 .tail() 方法的额外代码单元过于麻烦而不得不中途放弃,你是否有过这样的经历?现在不用怕了,你可以使用以下代码行展示你想展示的输出:

          from IPython.core.interactiveshell import InteractiveShellInteractiveShell.ast_node_interactivity = "all"

          下图展现了多个输出的结果:

          7. 为 Jupyter Notebook 即时创建幻灯片

          使用 RISE,你可以仅通过一次按键将 Jupyter Notebook 即时转变为幻灯片。而且 notebook 仍然处于活跃状态,你可以在展示幻灯片的同时执行实时编码!

          要想使用该工具,你只需通过 conda 或 pip 安装 RISE 即可。

            conda install -c conda-forge rise

            或者

              pip install RISE

              现在,你可以点击新按钮,为 notebook 创建不错的幻灯片了:

              相关推荐
              Python数据分析:利用Flask动态展示 Pyecharts 图表数据方法
              Python教程:数据分析模块pandas用法详解
              我用Python纪念了那些被烂片收割的智商税!
              用Python爬取B站5000 条视频,揭秘为何千万人为它流泪!
              Python教程:如何用xlrd和xlwt库读和写Excel表格?
              Python安装MySQL-python:EnvironmentError的解决办法
              分享:Python2和Python3有那些差异?
              Python 的内置对象都藏了哪些小秘密?
              实战干货!用案例让你一文搞懂python网络爬虫
              Python教程:图像处理模块ndimage用法实例分析
              Python教程:代理IP爬虫的使用方法
              Python教程:如何使用scipy模块实现一维卷积运算示例?
              Python:关于内存分配时的那些小秘密分享
              python技巧:global关键字的用法详解
              Python教程:深入了解python在HDA中的应用
              python技巧:SSLerror的requests证书问题解决方法
              PyCharm教程:搭建Spark开发环境的几个步骤
              Python开发技巧:openpyxl读取单元格字体颜色过程解析
              Python教程:面向对象之Web静态服务器
              Python教程:如何为终端提供持久性历史记录
              Python技巧分享:自动登录淘宝并保存登录信息的方法
              python3教程:如何搭建微型的web服务器?
              python技巧:xlwt如何设置单元格的自定义背景颜色
              如何解决Python字符串和正则表达式中的反斜杠('\')问题?
              Python开发技巧:编写一个简单登录功能过程解析
              Python编程:postman传递当前时间戳实例详解
              Python爬虫教程:使用beautifulSoup4爬取名言网案例代码分享
              python开发:动态迁移solr数据过程分享
              python数据分析:用线性回归预测股票价格的代码分析
              Python3教程:pandas.merge用法详解
              Python爬虫案例:如何爬取豆瓣电影信息?附代码实例
              python开发:如何编写简单端口扫描器?
              Django框架教程:Pagination分页实现代码实例
              python爬虫实例:猫眼电影和电影天堂数据csv和mysql存储过程

              精彩推荐

              热门教程